Building User Interfaces Designing for Accessibility **Professor Yuhang Zhao**

What we will learn today?

- What is accessibility?
- Accessible design
- Assistive technologies

What is accessibility?

Definitions

Usability: The effectiveness, efficiency, and satisfaction with which a specified set of users can achieve a specified set of tasks in a particular environment. — ISO 9241-11

Accessibility: The usability of a product, service, environment, or facility by people with the widest range of capabilities. — ISO 9241-20

Accessibility is the extent to which an interactive product is accessible by as many people as possible.

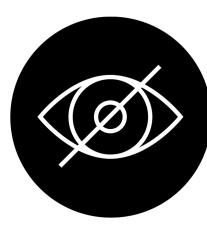
The primary focus of accessible design is making systems accessible to individuals with *disabilities*.

Disability¹

Definition: A *disability* is any condition of the body or mind (impairment) that makes it more difficult for the person with the condition to do certain activities (activity limitation) and interact with the world around them (participation restrictions).

Disability can change over time with age or recovery, and the severity of the impact of disability can change over time. Fewer than 20% are born with a disability, although 80% of people will have a disability once they reach 85.

 1 <u>CDC</u>

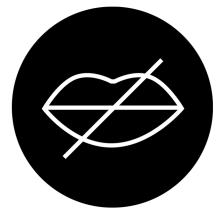

Three Dimensions of Disability²

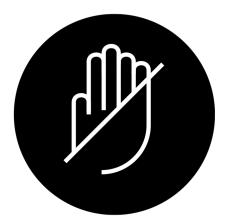
- **Impairment** in a person's body structure or function, or mental functioning (e.g., loss of a limb, loss of vision, or memory loss)
- 2. Limitation in activities (e.g., difficulty seeing, hearing, walking, or problem solving)
- 3. **Restrictions in participation** in activities of daily living (e.g., working, engaging in social and recreational activities, and obtaining health care)

² Source: World Health Organization

Types of Impairment: Anatomical³

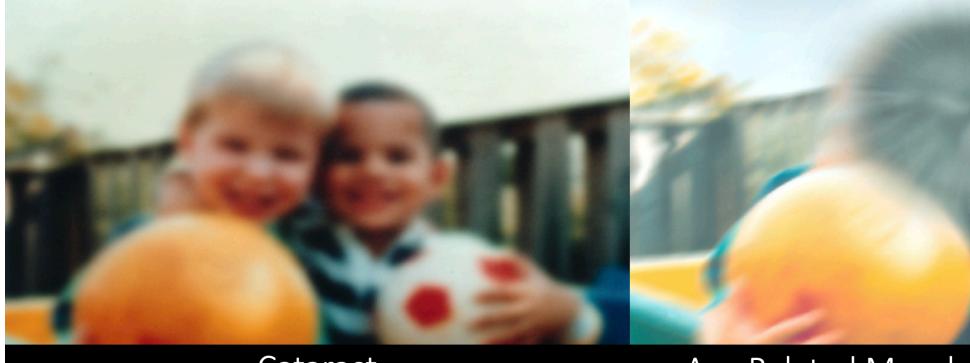
- 1. Sensory impairment
- 2. Physical impairment
- 3. Cognitive impairment


Can't see


Can't hear

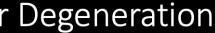
³Image source: Microsoft Inclusive Design Toolkit

© Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility


Can't speak

Can't touch


Sensory Impairment


Involves impairment in one or more senses, such as loss of vision or hearing.

Cataract

Age Related Macular Degeneration

Physical Impairment

Involves loss of function to one or more parts of the body, e.g., congenitally or after stroke or spinal-cord injury.

Cognitive Impairment

Includes cognitive deficits, such as learning impairment or loss of memory/cognitive function due to aging or conditions such as Alzheimer's disease.

Common Impairments

- Visual
- Motor/Mobility
- Auditory
- Seizures
- Learning

Visual Disabilities

Definition: Impairments in vision, including low vision, blindness, and color blindness.

Definition: Muscular or skeletal impairments in the hands or arms that affect user input as well as impairments that affect mobility, where users are in a wheelchair or bedridden.

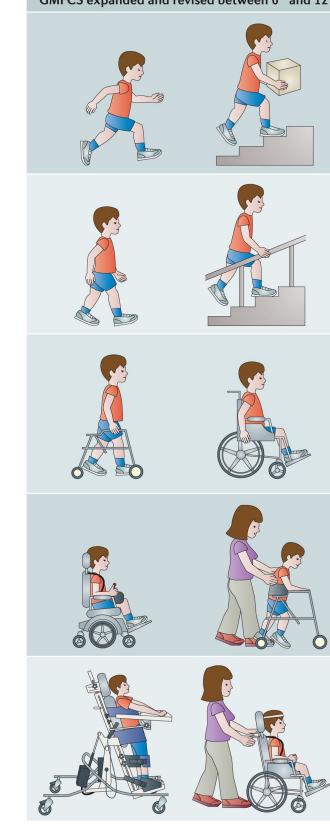
Auditory

Definition: Deficits that affect hearing at different levels of severity, including deafness.

Seizures

Definition: Neurological impairments, such as photosensitive epilepsy, that result in sensitivity to light, motion, and flickering on screen, which might trigger seizures.

Cognitive/Learning


Definition: Congenital, developmental, and traumatic (e.g., traumatic brain injury) conditions that result in cognitive or learning challenges.

Variability⁴

Impairments can vary in severity or structure depending on the source and nature of the impairment.

Severity: Children with cerebral palsy can have basic mobility or completely depend on a caretaker.

Structure: Vision impairments can include color blindness, peripheral-only vision, no light perception

⁴Image source

GMFCS expanded and revised between 6th and 12th birthday: descriptors and illustrations

GMFCS level I

Children walk at home, school, outdoors and in the community. They can climb stairs without the use of a railing. Children perform gross motor skills such as running and jumping, but speed, balance and coordination are limited.

GMFCS level II

Children walk in most settings and climb stairs holding onto a railing. They may experience difficulty walking long distances and balancing on uneven terrain, inclines, in crowded areas or confined spaces. Children may walk with physical assistance, a hand-held mobility device or use wheeled mobility over long distances. Children have only minimal ability to perform gross motor skills such as running and jumping.

GMFCS level III

Children walk using a hand-held mobility device in most indoor settings. They may climb stairs holding onto a railing with supervision or assistance. Children use wheeled mobility when travelling long distances and may self-propel for shorter distances.

GMFCS level IV

Children use methods of mobility that require physical assistance or powered mobility in most settings. They may walk for short distances at home with physical assistance or use powered mobility or a body support walker when positioned. At school, outdoors and in the community children are transported in a manual wheelchair or use powered mobility.

GMFCS level V

Children are transported in a manual wheelchair in all settings. Children are limited in their ability to maintain antigravity head and trunk postures and control leg and arm movements.

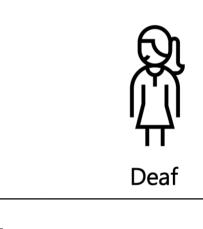
Types of Impairment: Temporal

- 1. Permanent impairment
- 2. *Temporary* impairment
- 3. Situational impairment

Permanent Impairment⁵

Congenital or long-term conditions, such as color blindness, missing body parts, etc.

⁵Image source: <u>Microsoft Inclusive Design Toolkit</u>


© Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility

Blind

One arm

Speak

See

Hear

Non-verbal

Arm injury

New parent

Ear infection

Laryngitis

Distracted driver

Sartenuer

Heavy accent

Temporary Impairment⁶

Permanent

See

One arm

Impairments that improve over time, such as recovery after illness or accidents, e.g., a broken arm.

Blind

Speak

⁶Image source: Microsoft Inclusive Design Toolkit

© Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility

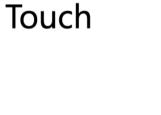
Arm injury

New parent

Ear infection

Laryngitis

Distracted driver

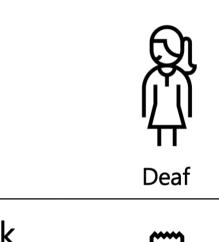

Heavy accent

Situational Impairment⁷

Impairments introduced by context, such as environments with low light or noise.

⁷Image source: Microsoft Inclusive Design Toolkit

© Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility


See

Hear

One arm

Speak

Non-verbal

Arm injury

New parent

Ear infection

Laryngitis

Distracted driver

Sartenuer

Heavy accent

How do we achieve accessibility?

Two ways to address accessibility problems:

- 1. Accessible design
- 2. Assistive technologies

Accessible Design

Medical Model of Disability

Disability as personal attribute

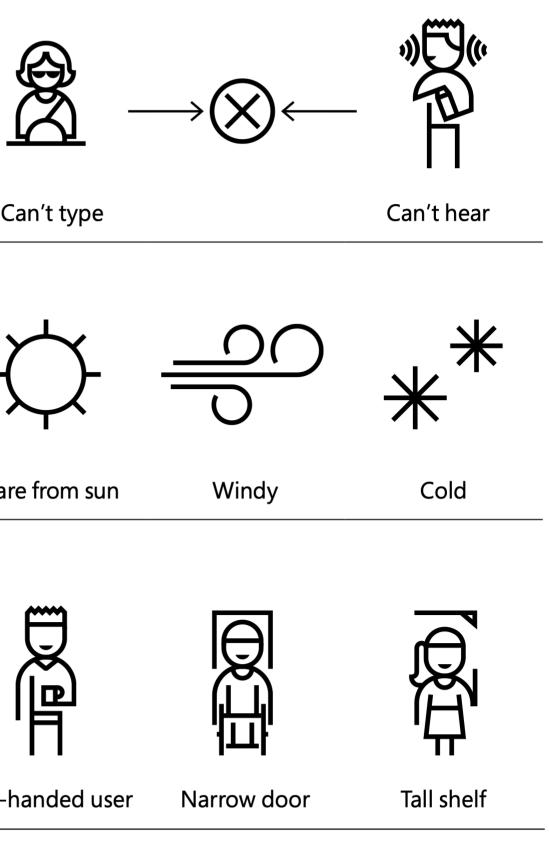
In the context of health experience, a disability is any restriction or lack of ability (resulting from an impairment) to perform an activity in the manner or within the range considered normal for a human being.

Social Model of Disability

Disability as **context dependent**

Disability is not just a health problem. It is a complex phenomenon, reflecting the interaction between features of a person's body and features of the society in which he or she lives.

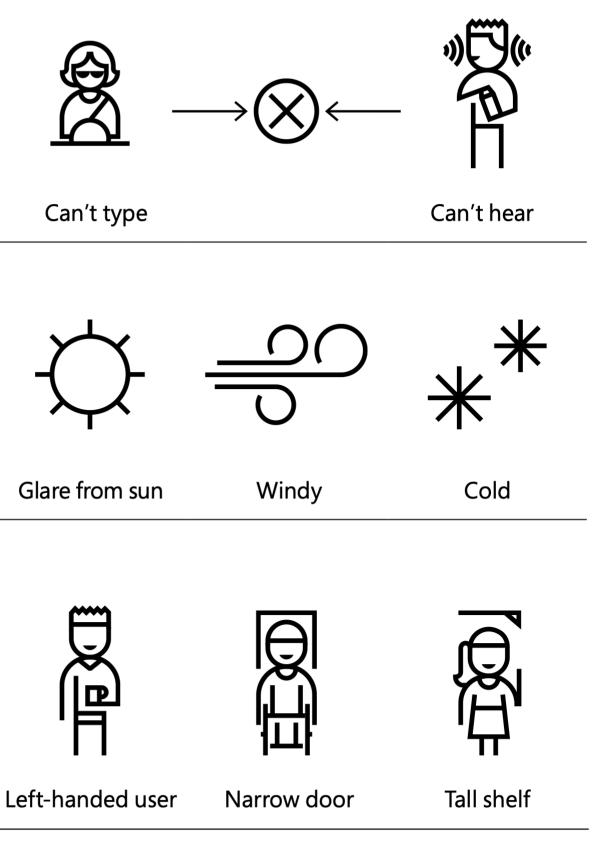
Social Model *:

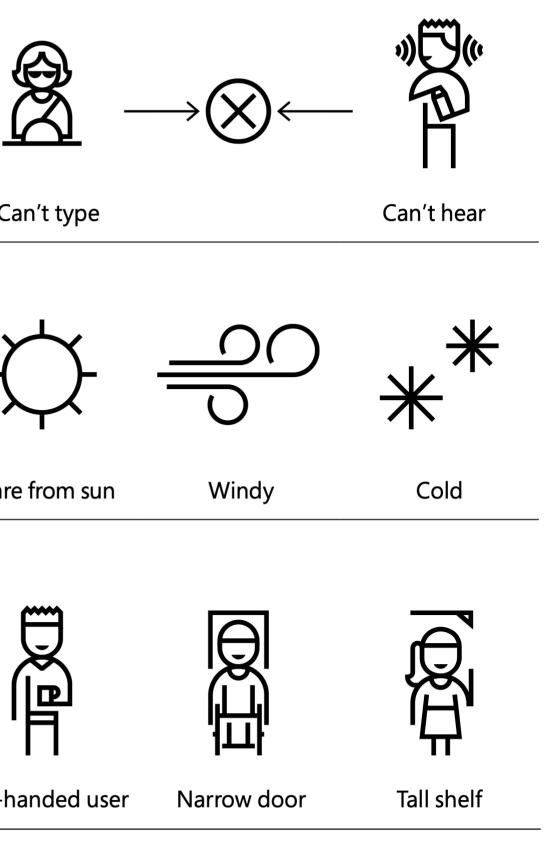

People are disabled by barriers in society, not by their impairment or difference.

^{*} Shakespeare, Tom. "The social model of disability." *The disability studies reader* 2 (2006): 197-204.

Mismatch between Abilities and Environment⁸

Context-dependent disability results from a mismatch between abilities and the environment:


Ability + Context = Disability


Human+ enviroment

Between

humans

Human+ object

⁸Image source: Microsoft Inclusive Design Toolkit

Universal Design⁹

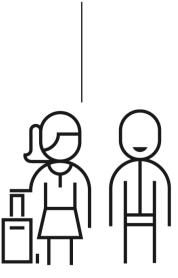
Definition: The design of products and environments to be usable by all people, to the greatest extent possible, without the need for adaptation or specialized design.

⁹ Ron Mace, 1996

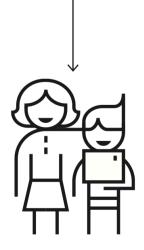
The Main Premise of Universal Design¹⁰

Design solutions that benefit some individuals may benefit the whole society. E.g., in the US, only 26K people are suffer loss of upper extremities. Designs that would benefit these 26K would also benefit another 21M people with temporary or situational disabilities.

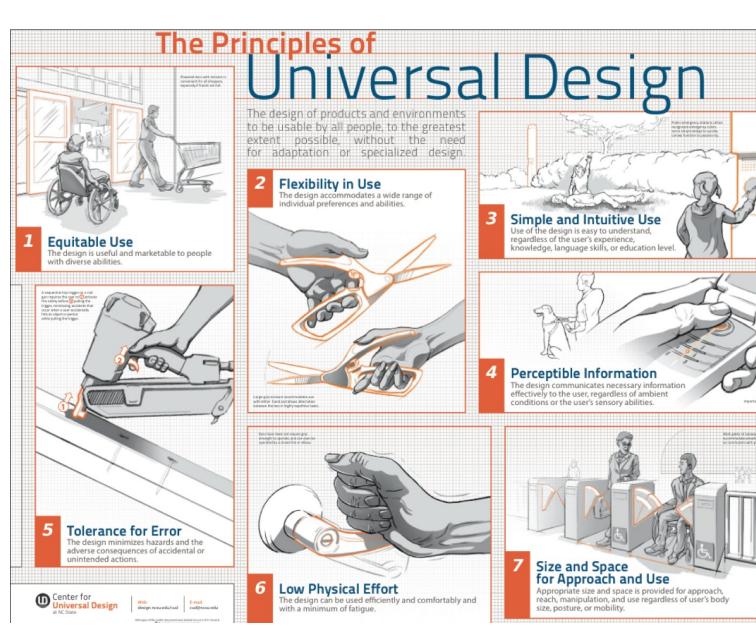
¹⁰ Image source: <u>Microsoft Inclusive Design Toolkit</u>


Although closed captioning was originally developed for individuals with hearing impairments, they now also benefit reading in noisy environments and learning to read.

¹¹Image source: Microsoft Inclusive Design Toolkit


l Re

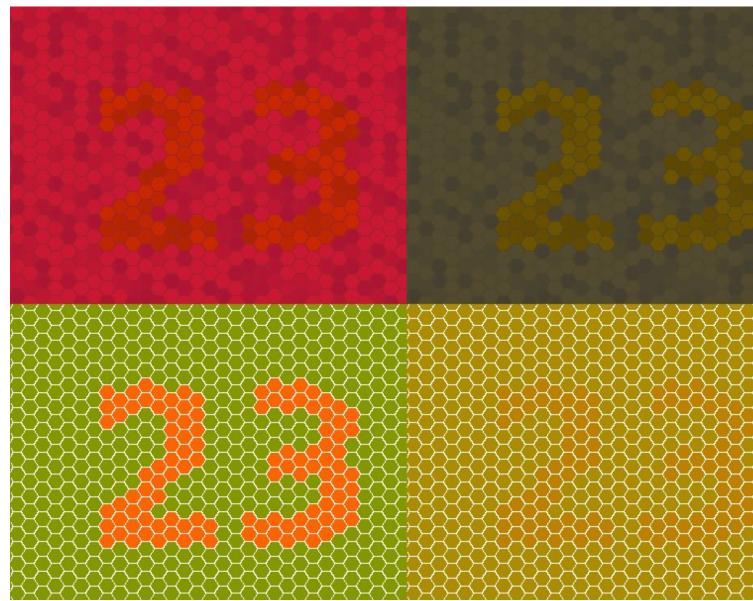
Hard of hearing


Reading airport captions

Teaching a child to read

Principles of Universal Design

- 1. Equitable use
- 2. Flexibility in use
- 3. Simple and intuitive use
- 4. Perceptible information
- 5. Tolerance for error
- 6. Low physical effort
- 7. Size and space for approach and use



¹² Image source: Interaction Design Foundation

The design is useful and marketable to people with diverse abilities.

- Provide the same means of use for all users: identical whenever possible; equivalent when not.
- 2. Avoid segregating or stigmatizing any users.
- 3. Provisions for privacy, security, and safety should be equally available to all users.
- 4. Make the design appealing to all users.

¹³ Example source: Interaction Design Foundation; Image source: Johannes Ahlmann

Principle 2: Flexibility in Use

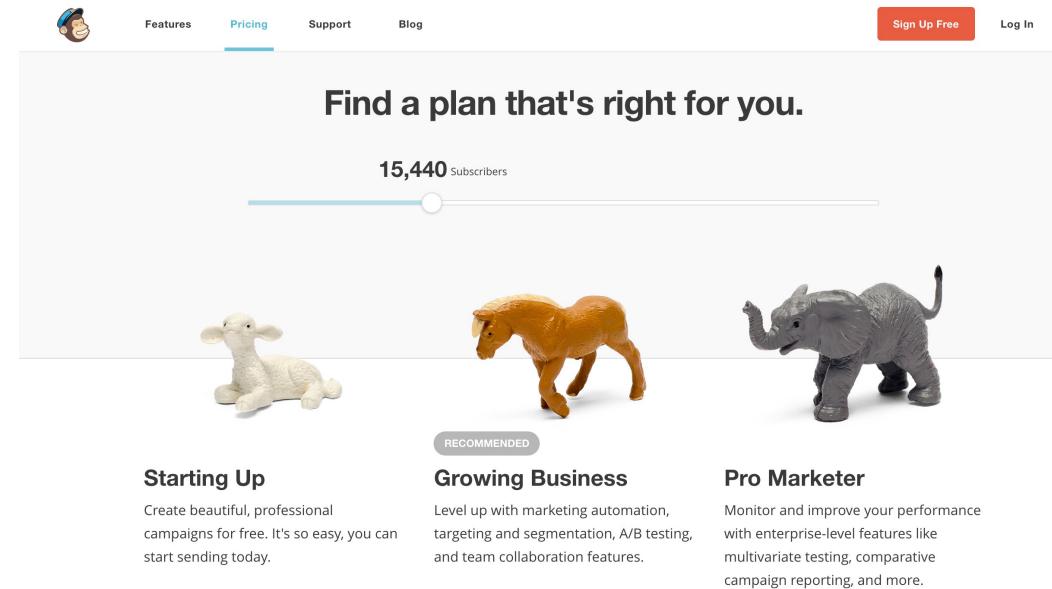
The design accommodates a wide range of individual preferences and abilities.

- Provide choice in methods of use.
- 2. Accommodate right- or left-handed access and use.
- 3. Facilitate the user's accuracy and precision.
- 4. Provide adaptability to the user's pace.

🔠 OneNote On	line	Sample Class Sample Cl
File Home Insert	Draw View Print 🖓 Te	ell me what you want to do Open In OneNote Give Feedback To Microsoft
Sample Cla	ass Notebook	Heat Transfer Project
Welcome	Heat Transfer Project	Sunday, February 17, 2013 12:16 PM
Collaboration Space	Chapter 5 -Transient cond	
■ ~ _Content Library	Chapter 6-convection	boundary
Using the Content Li	Chapter 7 - Correlations fo	inside
Problem of the Week	Chapter 8 -Internal Flow	
Lectures	Ch. 9. correlations	center
Handouts	Chapter 10- Boiling and C	
Student 1	Chapter 12. Radiation	
Handouts	Chapter 13	iminity to Ar
Class Notes		
Homework		
Ouimas		

¹⁴ Image source

© Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility


🦺 Share

r=R L= H

Use of the design is easy to understand, regardless of the user's experience, knowledge, language skills, or current concentration level.

- Eliminate unnecessary complexity.
- 2. Be consistent with user expectations and intuition.
- 3. Accommodate a wide range of literacy and language skills.
- Arrange information consistent with its importance. 4.
- 5. Provide effective prompting and feedback during and after task completion.

¹⁵ Example source: <u>Interaction Design Foundation</u>

© Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility

Q

The design communicates necessary information effectively to the user, regardless of ambient conditions or the user's sensory abilities.

- Use different modes (pictorial, verbal, tactile) for redundant presentation of essential information.
- 2. Provide adequate contrast between essential information & surroundings.
- 3. Maximize "legibility" of essential information
- 4. Differentiate elements in ways that can be described (i.e., make it easy to give instructions or directions).
- 5. Provide compatibility with a variety of techniques or devices used by people with sensory limitations.

TEDxHouston · **Filmed** June 2010 · 20:19 Brené Brown: The power of vulnerability

Watch next

Return	to	talk
netum	10	Lain

Subtitles and Transcript

Select language

English	~
LIGISI	*

So, I'll start with this: a couple years ago, an event planner called me because I was going to do a 0:12 speaking event. And she called, and she said, "I'm really struggling with how to write about you on the little flyer." And I thought, "Well, what's the struggle?" And she said, "Well, I saw you speak, and I'm going to call you a researcher, I think, but I'm afraid if I call you a researcher, no one will come, because they'll think you're boring and irrelevant."

0:36 (Laughter)

0:37 And I was like, "Okay." And she said, "But the thing I liked about your talk is you're a storyteller. So I think what I'll do is just call you a storyteller." And of course, the academic, insecure part of me was like, "You're going to call me a what?" And she said, "I'm going to call you a storyteller." And I was like, "Why not 'magic pixie'?"

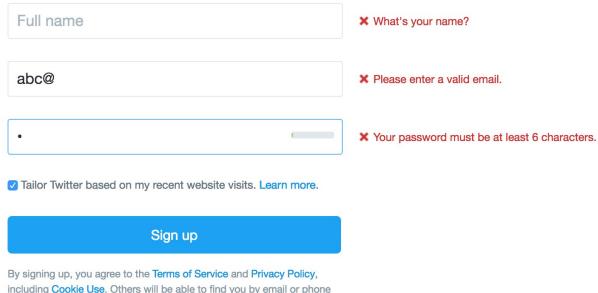
0:56 (Laughter)

- 0:59 I was like, "Let me think about this for a second." I tried to call deep on my courage. And I thought, you know, I am a storyteller. I'm a qualitative researcher. I collect stories; that's what I do. And maybe stories are just data with a soul. And maybe I'm just a storyteller. And so I said, "You know what? Why don't you just say I'm a researcher-storyteller." And she went, "Ha ha. There's no such thing."
- 1:25 (Laughter)
- 1:27 So I'm a researcher-storyteller, and I'm going to talk to you today -- we're talking about expanding perception -- and so I want to talk to you and tell some stories about a piece of my research that fundamentally expanded my perception and really actually changed the way that I live and love and work

¹⁶ Image source: Interaction Design Foundation

© Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility

Barry Schwartz: Our loss of wisdom


>

The design minimizes hazards and the adverse consequences of accidental or unintended actions.

- 1. Arrange elements to minimize hazards and errors: most used elements, most accessible; hazardous elements eliminated, isolated, or shielded.
- 2. Provide warnings of hazards and errors.
- 3. Provide fail safe features.
- Discourage unconscious action in tasks that require vigilance. 4.

Join Twitter today.

5

including Cookie Use. Others will be able to find you by email or phone number when provided.

Advanced options

¹⁷Image source: Interaction Design Foundation

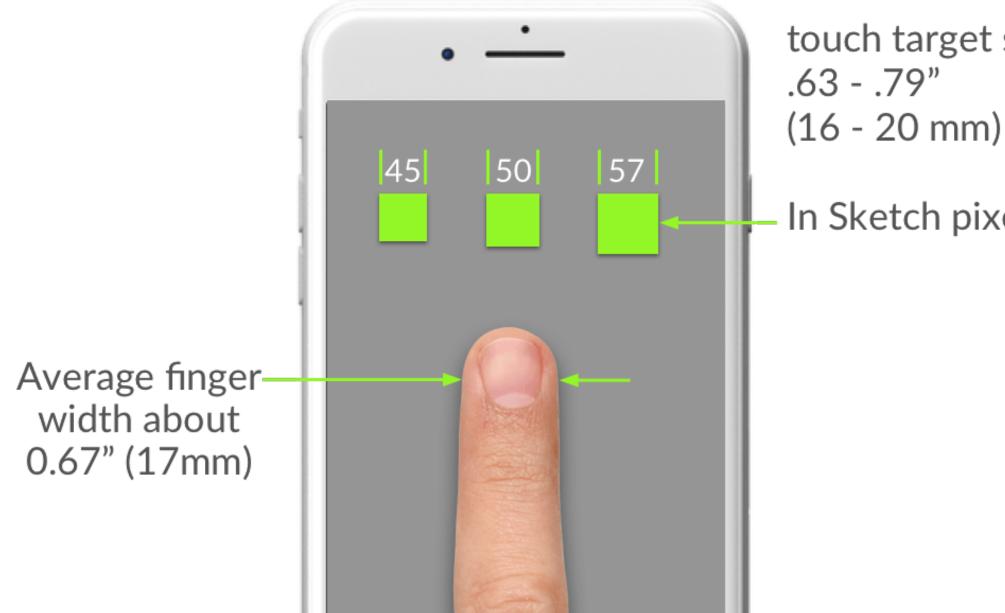
The design can be used efficiently and comfortably and with a minimum of fatigue.

- Allow user to maintain a neutral body position.
- 2. Use reasonable operating forces.
- Minimize repetitive actions. 3.
- 4. Minimize sustained physical effort.

			R2 My Tasks in Test 🗸	_
		Keyboard Sho	ortcuts	×
	Add Task		APPLICATION	r: Incon
		Tab+Q	Quick Add Task	
		Tab+W		
			Search for a project, tag, person, or task	
		¥/		
			TASK LIST	
		ل م	Create New Task	
			Create a section by adding a colon at the end of a task name	
		Tab+BKSP	Delete Selected Task(s) (or: backspace when task name is empty)	
		ж ч	Complete Selected Task(s)	
		Tab+M	Assign to Me	
		Tab+H	♥ Selected Task	
		Tab+Y	Mark as Today	
		Tab+U	Mark as Upcoming	
		Tab+L	Mark as Later	
		ESC	Close Task Pane	
		Tab	Open Task Pane	
		*/∔	Change Selection	
		∺+Shift+↑ / ∺+Shift+↓	Jump Up/Down to the next section	
		ж ↑ / ж ↓	Move Up/Down	

¹⁸ Image source: <u>Interaction Design Foundation</u>

	?	Upgrade	Test	RZ
iks ~				


Appropriate size and space is provided for approach, reach, manipulation, and use regardless of user's body size, posture, or mobility.

- Provide a clear line of sight to important elements for any seated or standing user.
- 2. Make reach to all components comfortable for any seated or standing user.
- 3. Accommodate variations in hand and grip size.
- 4. Provide adequate space for the use of assistive devices or personal assistance.¹⁹

¹⁹ Image source on next slide

[©] Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility

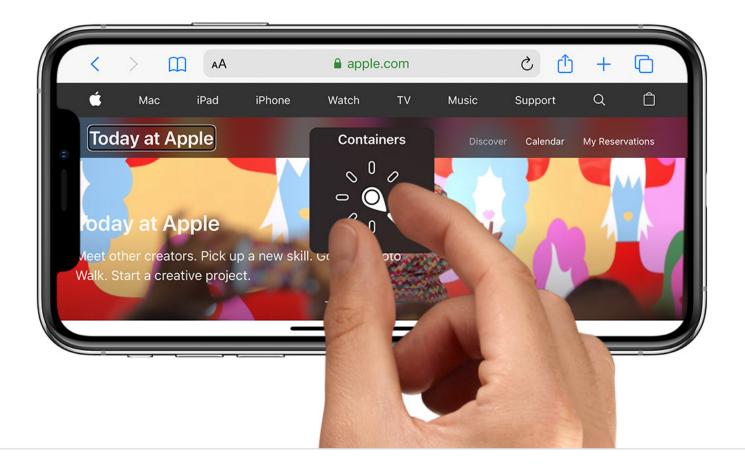
iPhone 8 375 x 667 pixel screen size

© Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility

touch target size range

In Sketch pixels: 45 - 57

Assistive Technologies


What are assistive technologies?

Definition: Specialized tools that close accessibility gaps.

Screen Readers²⁰

Definition: Software used by individuals with vision impairments to read screen content.

- JAWS for Windows
- VoiceOver for MacOS, iOS
- NVDA

²⁰ Image source

Screen Magnification²¹

Definition: Enlarges text or graphics on screens to improve visibility of content for individuals with limited vision.

²¹Image source

Text Readers²²

Definition: Tools that read out loud text on screens to support vision and learning disabilities.

²²Image source

© Building User Interfaces | Professor Zhao | Lecture 18: Designing for Accessibility

Same Card many same (10)

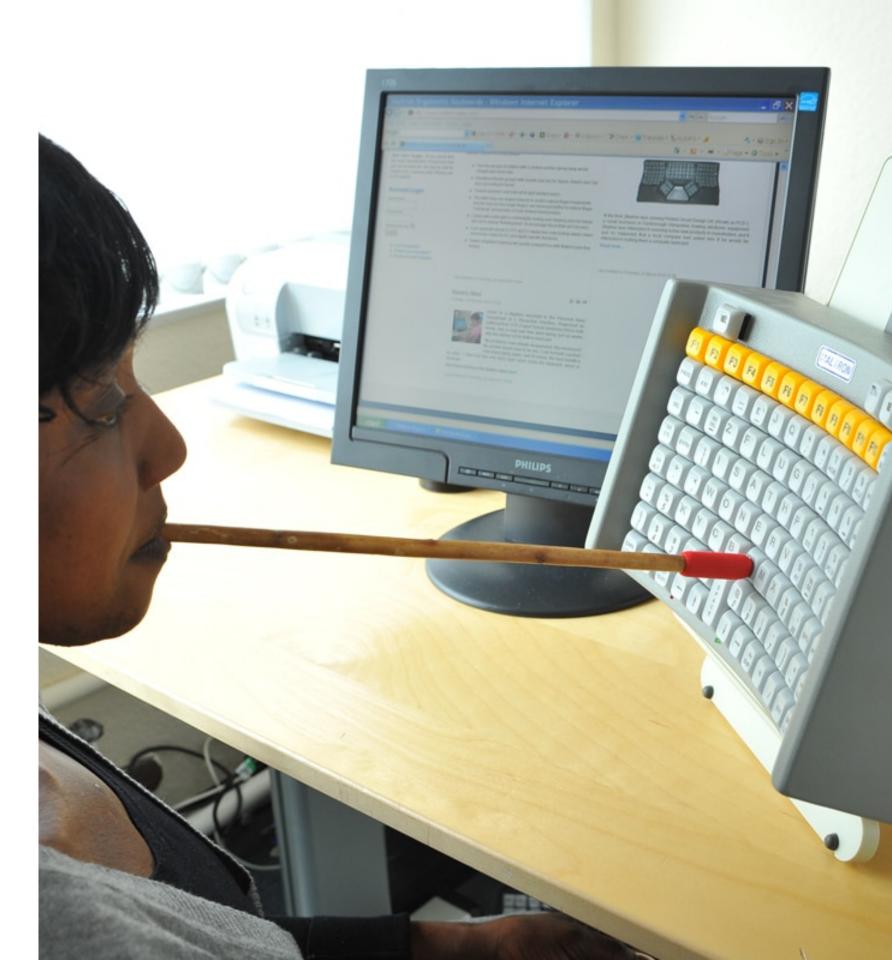
now brie oo

nottoes sint no settion.

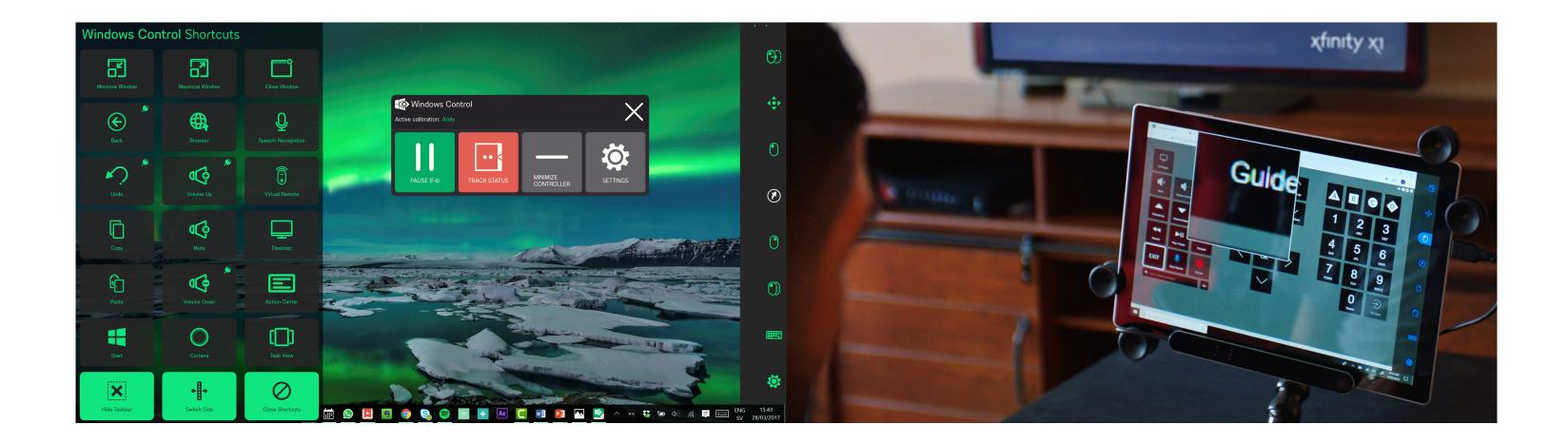
palbule aven vou have studied

Braille for the Web²³

Definition: A mechanical device that translates textual content on the screen into Braille.


²³Image source

Definition: Specialized tools that help individuals with motor impairments who cannot use a mouse or keyboard with pointing.


- Head/mouth wands/pointers
- Motion/eye tracking
- Single-switch (e.g., sip-and-puff)
- Speech input

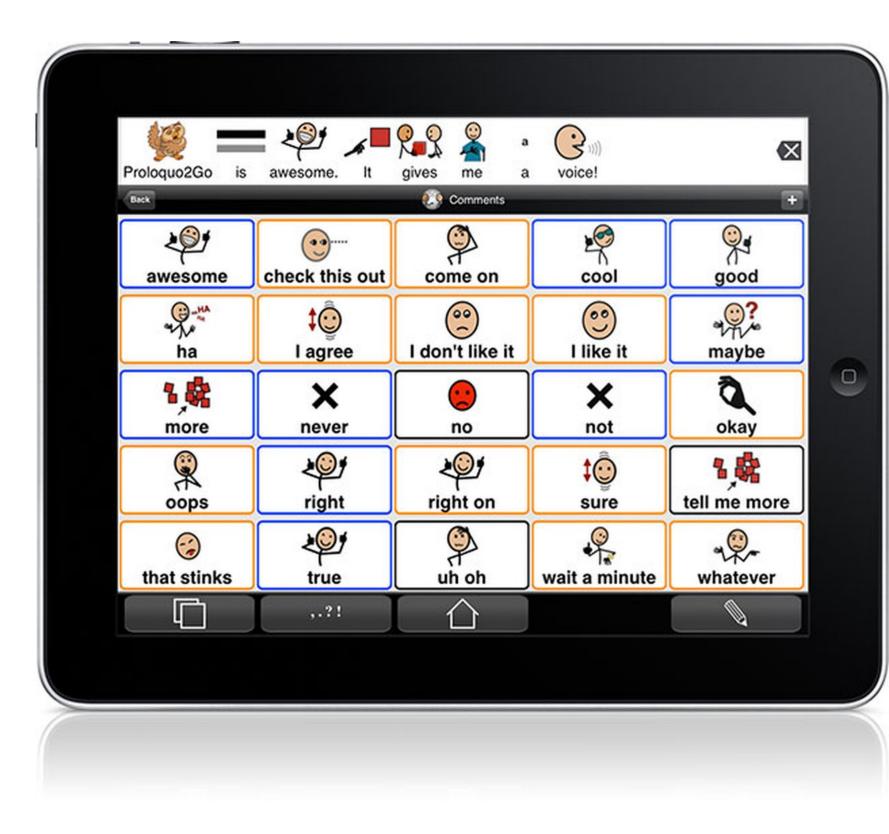
Head/mouth wands/pointers²⁴

²⁴ Image source

Motion/eye tracking²⁵

²⁵ Image source: <u>left</u>, <u>right</u>

Single-switch (e.g., sip-and-puff)²⁶


Speech input²⁷

²⁷Image source

Alternative & Augmentative Communication²⁸

Definition: Tools that help individuals who are unable to use verbal speech to communicate.

²⁸ Image source

29 Video

29

Accessibility Testing Tools

- WAVE—evaluates the overall level of accessibility for any given website.
- <u>Color Oracle</u> displays your site's colors in a manner similar to how a user with color blindness would see the page.
- <u>Image Analyzer</u>— examines website images and tests their compliance with accessibility standards.

In-class Activity

Try out an assistive technology:

- Task 1: Put a new iPhone in the shopping cart on the Apple site.
- 2. Task 2: Write a new email to your friend.

Report on an observation (e.g., an issue you encounter, a misunderstanding you might have, or a principle you identify on how the accessibility feature works).

What did we learn today?

- What is accessibility?
- Accessible design
- Assistive technologies