
Building User Interfaces

React Native 2
Intermediate Concepts
Professor Yuhang Zhao

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 1

What we will learn today?

— Mobile Navigation using React Native

— Mobile Input via Gestures using React Native

— Working with Date object in JS

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 2

Mobile Navigation using React
Native

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 3

The Options

There are two main ways of implementing navigation in RN:

1. Using ReactJS navigation, i.e., react-navigation

2. Using RN navigation, i.e., react-native-navigation

We will be covering react-navigation in depth. react-native-navigation
is for advanced use, as it involves modifying native components,
while react-navigation is programmed in JS.

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 4

Setting up ReactJS

Install react-navigation for RN:

npm install @react-navigation/native

Install dependencies:

npm install react-native-reanimated
 react-native-gesture-handler
 react-native-screens
 react-native-safe-area-context
 @react-native-community/masked-view

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 5

How does navigation in HTML work?

The History API1 provides a Window object that gives access to a
history object, which includes a stack of all the pages that the user
has previously visited.

When a new link (<a>) is pressed, the current URL is pushed to the
history stack. The "back" button calls the following function.

window.history.back()

1 More on the History API

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 6

https://developer.mozilla.org/en-US/docs/Web/API/History_API

When the "forward" button is pressed, it calls the following function.

window.history.forward()

We can also navigate in the stack and access a particular URL in the
history:

window.history.go(3);

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 7

How does navigation in RN work?

RN provides a set of navigators that accomplish stack-based and
other types of navigation:

1. Switch navigator

2. Stack navigator

3. Tab navigator

4. Drawer navigator

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 8

Switch Navigator

Definition: Enables showing one screen at a time and does not
involve "back" actions. Used primarily in authentication flows.

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 9

Stack Navigator

Definition: Enables transition between screens where each screen is
placed on a stack, as the History API does. The navigator
automatically implements the native transition animations.

Primarily used to go back and forth between list and detail views or
to walk the user through a process.

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 10

Tab Navigator2

Definition: Implements tabs at the
bottom or the top of the screen to
enable transitions among them.

Most commonly used navigation to
establish a main menu for the different
sections/parts of an application.

2 Image source

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 11

https://medium.com/@kevinle/comprehensive-routing-and-navigation-in-react-native-made-easy-6383e6cdc293

Drawer Navigator3

Definition: Enables tab-like transitions
through a hidden drawer that can be
exposed and hidden.

Used primarily for options and settings.

3 Image source

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 12

https://medium.com/@kevinle/comprehensive-routing-and-navigation-in-react-native-made-easy-6383e6cdc293

The Big Picture

Every RN project will use a combination of these navigators.

As a working example, let's imagine a news/RSS reader app with the
following specifications:

1. Landing page with unread and favorites tabs

2. Pages to show unread and favorite stories

3. Settings to change reading mode

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 13

My implementation should include:4

1. Tab navigator for the unread and
favorites pages

2. Stack navigators for the unread and
favorite stories

3. Drawer navigator for the drawer and
the tabbed pages

4 See example on Snack

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 14

https://snack.expo.dev/@yuhangzhao/news-reader

15

Screens

Screens can be defined as a React class component with the elements
we would like on them.

class UnreadScreen extends React.Component {
 render() {
 return (
 <View>
 <Text>Unread Stories</Text>
 ...
 </View>
);
 }
}

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 16

Screens can also be defined as functions:

function UnreadScreen() {
 return (
 <View>
 <Text>Unread Stories</Text>
 ...
 </View>
);
}

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 17

And placed inside a NavigationContainer:

const Stack = createStackNavigator();

export default function App() {
 return (
 <NavigationContainer>
 <Stack.Navigator>
 <Stack.Screen name="Unread" component={UnreadScreen} />
 </Stack.Navigator>
 </NavigationContainer>
);
}

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 18

UnreadStack & FavoritesStack

To create a stack navigator, we can use createStackNavigator:

import { createStackNavigator } from '@react-navigation/stack';

const FavoritesStack = createStackNavigator();

function CreateFavoritesStack() {
 return (
 <FavoritesStack.Navigator initialRouteName="Favorites">
 <FavoritesStack.Screen name="Favorites" component={FavoritesScreen}/>
 <FavoritesStack.Screen name="FavoriteStory" component={FavoriteStory}/>
 </FavoritesStack.Navigator>
);
}

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 19

Navigators come with a set of screen options:

<FavoritesStack.Navigator

 initialRouteName="Favorites"

 screenOptions={{

 gestureEnabled: false,

 headerTintColor: 'white',

 headerStyle: { backgroundColor: 'tomato'}

 }}

>

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 20

We can also set options for each screen:

<FavoritesStack.Screen
 name="Favorites"
 component={FavoritesScreen}
 options={{
 title: 'Favorite Stories',
 }}
/>

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 21

TabNavigation

To create a tab navigator, we can use createBottomTabNavigator:

import { createBottomTabNavigator } from '@react-navigation/bottom-tabs';

const TabNavigation = createBottomTabNavigator();

function MyTabs() {
 return (
 <TabNavigation.Navigator>
 <TabNavigation.Screen name="Unread" component={CreateUnreadStack} />
 <TabNavigation.Screen name="Favorites" component={CreateFavoritesStack} />
 </TabNavigation.Navigator>
);
}

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 22

DrawerNavigation

To create the drawer navigation for settings, we can use
createDrawerNavigator:

import { createDrawerNavigator } from '@react-navigation/drawer';

const DrawerNavigator = createDrawerNavigator();

function CreateDrawerNavigator() {

 return (

 <DrawerNavigator.Navigator initialRouteName="Home">

 <DrawerNavigator.Screen name="Home"

 component={CreateTabNavigationStackNavigator}

 options={{ drawerLabel: 'Home' }} />

 <DrawerNavigator.Screen name="Settings"

 component={CreateSettingsStackNavigator}

 options={{ drawerLabel: 'Settings' }} />

 </DrawerNavigator.Navigator>

);

}

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 23

navigation prop5

Each screen is automatically provided with a navigation prop (no
need to use constructor() for the navigation prop) that provides access
to parameters and actions, e.g., navigate, goBack, state.

<Button
 style={styles.button}
 color="tomato"
 title="Read"
 onPress={() => this.props.navigation.navigate('FavoriteStory')}
/>

5 Read more on navigation prop

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 24

https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html

Navigator actions

Each navigator has a set of specialized actions associated with them
that provide low-level access to the navigation behavior of the
navigator:

— CommonActions include navigate, reset, goBack, setParams

— StackActions include replace, push, pop, popToTop

— TabActions include jumpTo

— DrawerActions include openDrawer, closeDrawer, toggleDrawer, jumpTo

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 25

Mobile Input via Gestures using
React Native

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 26

Why worry about gesture?

Because of the direct/absolute mapping between input space and the
screen space and the touch-sensitive input capabilities, gestures are a
resource for mobile development. A number of RN packages
provide access to gestures:

— Gesture Responder System

— PanResponder

— React Native Gesture Handler

— React Native Swipe Gestures

— React Native Swipeout

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 27

https://facebook.github.io/react-native/docs/gesture-responder-system
https://facebook.github.io/react-native/docs/panresponder
https://kmagiera.github.io/react-native-gesture-handler/
https://www.npmjs.com/package/react-native-swipe-gestures
https://github.com/dancormier/react-native-swipeout

Handling Gestures Using PanResponder

PanResponder uses the core gesture responder system to reconcile
several touches into a single gesture that can be used to recognize
multi-touch gestures.

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 28

To initialize, we create a PanResponder object with event handlers:

import { PanResponder } from 'react-native';
...
this._panResponder = PanResponder.create({
 onStartShouldSetPanResponder: (evt, gestureState) => true,
 onStartShouldSetPanResponderCapture: (evt, gestureState) => true,
 onMoveShouldSetPanResponder: (evt, gestureState) => true,
 onMoveShouldSetPanResponderCapture: (evt, gestureState) => true,
 onPanResponderGrant: (evt, gestureState) => { },
 onPanResponderMove: (evt, gestureState) => { },
 onPanResponderTerminationRequest: (evt, gestureState) => true,
 onPanResponderRelease: (evt, gestureState) => { },
 onPanResponderTerminate: (evt, gestureState) => { },
 onShouldBlockNativeResponder: (evt, gestureState) => { return true; },
});

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 29

PanResponder Event Handlers

Event handlers utilize nativeEvent and gestureState objects:

onPanResponderMove: (event, gestureState) => {}

nativeEvent object provides properties such as locationX and locationY
(position of the touch with respect to the element).

gestureState object provides properties about the gesture, such as vx
and vy (velocity of the gesture).

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 30

onPanResponderGrant: (evt, gestureState) => { }

Indicates that the gesture has started. The screen should provide the
user with visual feedback on what's happening.

onPanResponderMove: (evt, gestureState) => { }

gestureState provides access to the most recent move distance
(gestureState.move{X,Y}) and the accumulated gesture distance
(gestureState.d{x,y}).

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 31

onPanResponderRelease: (evt, gestureState) => { }

Indicates that the user has released all touches while this view is the
responder.

onPanResponderTerminate: (evt, gestureState) => { }

Indicates that another component has become the responder, so this
gesture should be cancelled.

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 32

Associating Gestures with Screens6

We provide panHandlers as a prop into the component:

<View style={styles.container} {...this._panResponder.panHandlers}>

 // ...

</View>

6 See example 1, example 2 in Snack

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 33

https://snack.expo.dev/@yuhangzhao/panresponder_scroll
https://snack.expo.dev/@yuhangzhao/panresponder

Are we done? No.

We need to be able to respond to the gestures with appropriate
behaviors on the interface, and that's done using animation
packages, particularly:

— Animated

— LayoutAnimation

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 34

Animated

The Animated library provides the ability to create time-based
animation using a number of methods.

this.state = { // Create Animated.Value
 fadeValue: new Animated.Value(0) // Connect it to style attributes
};

_start = () => {
 Animated.timing(this.state.fadeValue, { // Animate
 toValue: 1,
 duration: 1000
 }).start();
};

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 35

The core workflow involves using Animated.Value, connecting it to
style attributes, and driving it using Animated.timing(), but other
methods include:7

— Animated.sequence() allows sequencing several animations.

— Animated.spring() animates attributes without a set time in
different motion styles, e.g., velocity, bounciness, speed, tension,
friction.

— Animated.interpolate() maps input ranges to output ranges using
linear interpolation.

— Easing functions help in gradual acceleration or deceleration (e.g.,
easing: Easing.back()).

7 See example in Snack

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 36

https://snack.expo.dev/@yuhangzhao/animated-example

LayoutAnimation

The LayoutAnimation library animates the entire screen when there
are changes in the layout, e.g., when an element is removed from the
screen.

LayoutAnimation is used before setState() is called.

Animated animates specific components without changing the layout
of the screen, while LayoutAnimation animates all components on the
screen when the layout changes.

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 37

8

import { UIManager, LayoutAnimation } from 'react-native';

...

<TouchableOpacity

 onPress={() => {

 LayoutAnimation.configureNext(LayoutAnimation.Presets.spring);

 this.setState({expanded: !this.state.expanded}); }}>

 <Text>{this.state.expanded ? 'Expanded text' : 'Collapsed text'}</Text>

</TouchableOpacity>

8 See example in Snack

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 38

https://snack.expo.dev/@yuhangzhao/layoutanimation-example

Notifications example9

9 See combined example in Snack

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 39

https://snack.expo.dev/@yuhangzhao/notifications-swipe

Working with Date Objects in JS

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 40

Date

The Date object represents a single moment in time in a platform-independent
format. We need to use the object in ways that are meaningful both for the server API
and for the user.

Users would like to see something like:

Thu Nov 07 2019 11:53:47 GMT-0600 (Central Standard Time)

While the server expects something like:10

2019-11-07T11:53:47-06:00

10 ISO 8601 Standard for Date and Time Formats

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 41

https://www.w3.org/TR/NOTE-datetime

Good news: We can serialize Date object into the ISO 8601 format.

var date = new Date();

console.log(date); // Thu Nov 07 2019 11:58:58 GMT-0600 (Central Standard Time)

var json = JSON.stringify(date);

console.log(json); // "2019-11-07T17:58:58.487Z"

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 42

Bad news: There is no good method to deserialize back to a date
format.

var json = "\"2019-11-07T17:58:58.487Z\"";

var dateStr = JSON.parse(json);

console.log(dateStr); // 2019-11-07T17:58:58.487Z

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 43

The trick: We can use the Date constructor for this translation.

var json = "\"2019-11-07T17:58:58.487Z\"";

var dateStr = JSON.parse(json);

console.log(dateStr); // 2019-11-07T17:58:58.487Z

var date = new Date(dateStr);

console.log(date); // Thu Nov 07 2019 11:58:58 GMT-0600 (Central Standard Time)

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 44

A Few Tips

— The passwords may not be secure,
so do not use a password you use for
other accounts.

— Do not create too many accounts.

— Postman demo...

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 45

What did we learn today?

— Mobile Navigation using React Native

— Mobile Input via Gestures using React Native

— Working with Date object in JS

— Postman Demo

© Building User Interfaces | Professor Zhao | Lecture 14: React Native — Intermediate Concepts 46

