
Building User Interfaces

React 2
Building w/ React
Professor Yuhang Zhao
© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Setting up a React project
In the development environment

What you will need: terminal, coding environment, Node.js

npm install -g create-react-app

npx create-react-app <your-app-name>
cd <your-app-name>
npm start

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Setting up a React project
In a sandbox

Simple React application:18

1. set sandbox settings to Babel preprocessor

2. import react and react-dom CDNs

React project:

— Create a project using a template / upload your project

18 See example in CodePen

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://codepen.io/yuhangz/pen/vYZQqKY?editors=1010

What we will learn today?

— Using Component Libraries with React

— Component development and reuse

— Dataflow among components

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Using Component Libraries with
React

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Refresher: What are Component Libraries?1

Definition: So!ware libraries that abstract away the low-level CSS
implementation of user-facing elements.

Some popular libraries:
* Bootstrap
* Foundation
* Semantic UI
* Pure
* UIkit

1 react-bootstrap

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://getbootstrap.com/
https://foundation.zurb.com/
https://semantic-ui.com/
https://purecss.io/
https://getuikit.com/v2/
https://react-bootstrap.github.io/getting-started/introduction

Integrating Bootstrap into React

Three methods:

1. Using the CDN

2. Bootstrap dependency

3. React Bootstrap package

!

 preferred method

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

CDN-based Use

As we did to use it with JS, add to public/index.html:

<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">

...

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"
integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Bootstrap Dependency

Install Bootstrap as a dependency:

npm install bootstrap

Include in your app's entry JS file, e.g., src/index.js:

import 'bootstrap/dist/css/bootstrap.min.css';

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

React Bootstrap packages

Using: react-bootstrap1:

npm install react-bootstrap bootstrap

import { Button } from 'react-bootstrap';

Using reactstrap2:

npm install reactstrap react react-dom

import { Button } from 'reactstrap';

2 reactstrap

1 react-bootstrap

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://reactstrap.github.io/
https://react-bootstrap.github.io/getting-started/introduction

A Very Simple React App3

ReactDOM.render(
 <h1 className="jumbotron">Welcome to my Page!</h1>,
 document.getElementById('welcome'));

3 See in CodePen

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://codepen.io/yuhangz/pen/NWgJPyy

Back to My Home Page Example4

<Jumbotron>
 <h1>Welcome to my page!</h1>
 <p>You can download my resume below!</p>
 <Button variant="info" size="large" onClick={this.open}>Download</Button>
 <Modal show={this.state.showModal} onHide={this.close}>
 <Modal.Body><h3>Downloading...</h3></Modal.Body>
 <Modal.Footer><Button onClick={this.close}>Close</Button></Modal.Footer>
 </Modal>
</Jumbotron>

4 See in CodePen

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://codepen.io/yuhangz/pen/wveOBmp

Component Development and
Reuse

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Refresher: React.Component

Definition: A React component is a function or class that accepts an
input and returns a React element.

class Welcome extends React.Component {
 render() {
 return <h1>Hello, {this.props.name}</h1>;
 }
}

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Refresher: React.Component, Continued

Components work like JS functions; they accept props and return
React elements that correspond to what will be rendered in the
DOM.

Each component is encapsulated (one component per file) and can
operate independently, affording modularity.

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

"Thinking in React"5

1. Mock-up design

2. Break the UI into a component hierarchy

3. Build a static version

4. Identify the minimal set of mutable state

5. Identify where your state should live

6. Add inverse data flow

5 ReactJS.org: Thinking in React

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://reactjs.org/docs/thinking-in-react.html

Step 1: Mock-up design

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Step 2: Break UI into Component
Hierarchy

— TACard

— TAName

— TAOfficeHours

— TAContactButton

Note: This example is only illustrative.
In a real development scenario, we
would not dedicate components to, e.g.,
single text fields.

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

In-class activity

Write out or draw the component
hierarchy for the elements shown in the
screenshot above and listed below (submit
to Quiz 4):

— NASA_logo

— user_name

— user_ID

— tweet_content

— tweet_time

— button_respond

— button_retweet

— button_like

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Step 3: Build A Static Version6

<div className={"col-sm-3"}>
 <div className={"card border-default mx-1"}>
 <div className="card-body">
 <h6 className="TA-name">Andy Schoen</h6>
 <p className="TA-office-hours">Tue, 3-5 pm</p>
 <button className={"btn btn-success"}>{"Contact Andy"}</button>
 </div>
 </div>
</div>

6 See in StackBlitz ↩

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://stackblitz.com/edit/component-reuse-example-lw4eud?file=index.js

Step 4: Identify the Minimal Mutable State

— TACard — Card container

— TAName — TA name text

— TAOfficeHours — TA office hours text

— TAContactButton — TA button text

We don't actually need to use state for any of these!

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Step 4: Identify the Minimal Mutable State

Let's say that the button will change colors if the user contacts a TA
to keep track of who has been contacted.

— TACard

— TAName

— TAOfficeHours

— TAContactButton

— TAContactButtonPressed — this.state {...}

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Step 5: Identify Where the State Should Live

There are three options:

1. App keeps track of the button state for each TAContactButton

2. TACard keeps track of the button state for its TAContactButton

3. A dedicated TAContactButton component tracks its own state

All options will work, #3 is most aligned with the React way.

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Step 6: Add Inverse Data Flow (more on this in a bit)

— App

— CardComponent

— ButtonComponent

— CardComponent

— ButtonComponent

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Information Flow in React 7

Information flow is achieved using
props and callbacks:

1. Parents pass props (including
callbacks) to children

2. When executed, e.g., by being
triggered by events, callbacks return
information to the parent

More on this later in the lecture...

7 See in StackBlitz ↩

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://stackblitz.com/edit/component-reuse-example-vfoshv?file=ButtonComponent.js

Parent (CardComponent) callback:

<ButtonComponent
TAContectButtonText={this.state.TAContectButtonText}
callbackFromCard={this.buttonCallback}/>

buttonCallback = (dataFromButton) => {
 // This acts on the callback from the button
 dataFromButton
 ? this.setState({ buttonCallBackMessage: '' })
 : this.setState({ buttonCallBackMessage: 'Connecting...' });
 };

Child (ButtonComponent) response (called by onClick):

this.props.callbackFromCard(this.state.TAContectButtonPressed);

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

More on Components

— Class vs. functional components

— Fragments

— Controlled vs. uncontrolled components

— Passing methods through props

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Class vs. Functional Components

A React Class component:

class Welcome extends React.Component {
 render() {
 return <h1>Hello, {this.props.name}</h1>;
 }
}

A React functional component (essentially a JS function):

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Benefits of Functional Components

— Easier to write, read, and debug

— More efficient to write and to run, as functional components
involve less code

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Pro Tip 1: Before React 16.8, functional components are stateless. But
it is NOT true any more! Now you can use State via Hooks!

Pro Tip 2: Create a components folder for Class and functional
components, including one Component per file, to maximize
modularity and code reuse.

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Fragments8

Definition: Fragments are React constructs that can group child
components without adding extra nodes to the DOM.

Benefits: Shortens code, reduces DOM complexity, and increases
efficiency.

8 ReactJS.org: Fragments

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://reactjs.org/docs/fragments.html

An example

Imagine creating a table ...

class Table extends React.Component {
 render() {
 return (
 <table>
 <tr>
 <Columns />
 </tr>
 </table>
);
 }
}

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

... and using a Columns component...

class Columns extends React.Component {
 render() {
 return (
 <div>
 <td>Hello</td>
 <td>World</td>
 </div>
);
 }
}

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

... the output of <Table /> would be:

<table>
 <tr>
 <div>
 <td>Hello</td>
 <td>World</td>
 </div>
 </tr>
</table>

Do you see a problem here?

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

<div>s explosion! Fragments address this problem using the
construct <React.Fragment> or <>.9

class Columns extends React.Component {
 render() {
 return (
 <React.Fragment>
 <td>Hello</td>
 <td>World</td>
 </React.Fragment>
);
 }
}

9 See example in CodePen

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://codepen.io/yuhangz/pen/zYzbYmL?editors=1111

... this React code would produce the following DOM representation:

<table>
 <tr>
 <td>Hello</td>
 <td>World</td>
 </tr>
</table>

Look, no undesired divs!

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Controlled vs. Uncontrolled Components 13

Definition: The states of controlled components are managed by React. User
input elements, e.g., <input>, <textarea>, <select>, are uncontrolled when they
manage their own states. We can use refs to give React access to DOM
elements.

constructor(props) {
 super(props);
 this.input = React.createRef();
 }

<input type="text" ref={this.input} />

13 See on CodePen

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://codepen.io/yuhangz/pen/PoOOyMG?editors=1010

User input elements can also be handled in a controlled way, where
the React state is the "single source of truth." 14

constructor(props) {
 super(props);
 this.state = {value: ''};
 this.handleChange = this.handleChange.bind(this);
 }
handleChange(event) {
 this.setState({value: event.target.value});
 }

<input type="text" value={this.state.value} onChange={this.handleChange} />

14 See on codepen

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://codepen.io/yuhangz/pen/XWzzyZw?editors=1010

Passing Functions Through Props

We have been using props to pass data into child components, but
props can also be used to pass functions, event handlers, and event
callbacks (more on this in a little bit).

<button onClick={this.handleClick}>

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Another Example 11

In the constructor() of App:

this.state = {buttonColor: 'btn btn-success' };
this.updateColor = this.updateColor.bind(this);

An independent function:

updateColor() {
 this.setState({
 buttonColor : 'btn btn-danger'
 });
}

In the render():

<ContactButton buttonColor={this.state.buttonColor}
updateButtonColor={this.updateColor}/>

11 See on StackBlitz

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://stackblitz.com/edit/simplest-component-example-hphoko?file=ContactButton.jsx

In the ContactButton class:

<React.Fragment>
 <button class={props.buttonColor} onClick={props.updateButtonColor}>
 Contact Customer Service
 </button>
</React.Fragment>

App gives ContactButton access to its updateColor() function by passing
it through props.

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

this.bind()

Definition: Binding, through this.<functionName>.bind(this), clarifies
that the scope of the function that is passed to children component
is within the parent component.

this.updateColor = this.updateColor.bind(this);

...
<ContactButton buttonColor={this.state.buttonColor}
updateButtonColor={this.updateColor}/>

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Pro Tip 1: Binding is usually done in the constructor(), but it can also
be done within render(), although render() creates a new function
every time the component renders (inefficient).

Pro Tip 2: Make sure that you are not calling the function, which will
call the function every time components are rendered, but instead
passing the function.

Example of calling (top) and passing (bottom) functions:

<button onClick={this.updateColor()}>Contact Customer Service</button>

<button onClick={this.updateColor}>Contact Customer Service</button>

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Dataflow between Components

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Why is dataflow necessary?12

Interactivity, modularity, and hierarchical construction necessitate
dataflow among components.

— App

— CardComponent

— CardComponent

Can be parent-to-child, child-to-parent, and sibling-to-sibling.

12 Ruth Pardee: Passing Data between React Components

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://medium.com/@ruthmpardee/passing-data-between-react-components-103ad82ebd17

Parent-to-Child Dataflow

This is the easiest case — use props!

<CardComponent TAContectButtonText={"Contact John"}/>

constructor(props) {
 super(props);
 this.state = {
 TAContectButtonText:
 this.props.TAContectButtonText,
 };
}

<ButtonComponent
TAContectButtonText={this.state.TAContectButtonText}/>

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Child-to-Parent Dataflow

This is the more challenging case:

1. Define a callback function in the
parent

2. Define a parameter in the callback
function for the data that the child
will pass

3. Pass the callback as a prop to the
child

4. Call the callback using
this.props.<callback-function-name>
in the child and pass the data as the
argument

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Parent callback:

<ButtonComponent callbackFromCard={this.buttonCallback}/>

buttonCallback = (dataFromButton) => {
 dataFromButton ?
 this.setState({ buttonCallBackMessage: "" }) :
 this.setState({ buttonCallBackMessage: "Connecting..." })
}

Using the passed callback on the child:

this.props.callbackFromCard(this.state.TAContectButtonPressed);

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Sibling-to-Sibling Dataflow

This case combines both approaches:

1. Identify a parent that can serve as an
intermediary

2. Pass data from the child to the
parent using a callback

3. Set this data as a state for the parent

4. Pass the data from the state to the
other child as prop

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

Pro Tip: These approaches do not scale well into large applications.
Redux (for JS) and React-Redux (for React) help you manage the
state of the application. It works like a global object that holds
information that can be used across the various components of the
application.

Resources:

— React Redux documentation

— The only introduction to Redux you'll ever need

— A complete React Redux tutorial for beginners

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

https://react-redux.js.org/
https://medium.com/javascript-in-plain-english/the-only-introduction-to-redux-and-react-redux-youll-ever-need-8ce5da9e53c6
https://daveceddia.com/redux-tutorial/

What we learned today:

— Using Component Libraries with React

— Component development and reuse

— Dataflow among components

© Building User Interfaces | Professor Mutlu | Lecture 07: React 2 — Building w/ React

