
Building User Interfaces

React 1
An Introduction
Professor Yuhang Zhao
© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Disclaimer

As with JS, this is not a comprehensive introduction to React, so
below are links to great additional resources:

— ReactJS.org

— W3 Schools

— Build with React

— Tania Rascia's React Overview and Walkthrough

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://reactjs.org/docs/getting-started.html
https://www.w3schools.com/react/
http://buildwithreact.com/
https://www.taniarascia.com/getting-started-with-react/

Another Disclaimer1

If this is your first class, be
prepared to:

— Work on more open-ended
problems

— Know that there are likely more than
one "correct" solution

— Find alternative ways of
implementing ideas (check whether
they are approved)

These are great skills to build!

1 Image source

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://pixabay.com/photos/good-bridge-passage-nature-tree-1157680/

What we will learn today?

— History and overview of React

— Overview of building blocks

— Setting up a React project

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Why should we use React?

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

What is React?2

Definition: Also called ReactJS, React is a JS library for building user
interfaces.

— Developed by Facebook, dating back to 2010.

— Started as an internal development tool, then open-sourced in
2013.

2 More on the history of React

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/

Refresher: Document Object Model3

Definition: Document Object Model
(DOM) translates an HTML or XML
document into a tree structure where
each node represents an object on the
page.

3 Wikipedia: DOM

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://en.wikipedia.org/wiki/Document_Object_Model

Refresher: DOM Programming Interface

— Objects: HTML elements, such as a paragraph of text.

— Property: Value that we can get or set, such as the id of an
element.

— Method: An action we can take, such as adding or deleting an
HTML element.

For JS to interact with user-facing elements, we first need to access
them...

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Refresher: Accessing HTML elements

Most common way of accessing content is getElementById().

<p id="userName"></p>

<script>
 document.getElementById("userName").innerHTML = "Cole Nelson";
</script>

We can also find elements using tag name, class name, CSS selectors,
and HTML object collections.

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Refresher: Manipulating HTML elements

Changing content:

document.getElementById("userName").innerHTML = "Cole Nelson";

Changing attributes:

document.getElementById("userImage").src = "Headshot.png";
document.getElementById("userName").style.color = "red";

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Refresher: DOM Events

DOM provides access to HTML events, such as onclick, onload,
onunload, onchange, onmouseover, onmouseout, onmousedown, onmouseup,
formaction.

We can register functions to events using inline event handlers, DOM
on-event handlers, and using event listeners.

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

What's wrong with this approach?45

— Working with HTML DOM is slow

— The DOM for single-page applications (SPAs) can be huge

— Interactive applications require a large number of and
frequent updates on DOM elements

— Inefficient updating

5 Image source

4 React Kung Fu

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://tenor.com/search/instagram-gifs
https://reactkungfu.com/2015/10/the-difference-between-virtual-dom-and-dom/

Solution: The Virtual DOM6

Definition: The virtual DOM is a virtual representation of the user-
facing elements that are kept in memory and synced with the real
DOM when DOM elements are updated.

6 Image source

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://blog.csdn.net/gongch0604/article/details/86630260

More on the solution: Reconciliation7

Definition: Reconciliation is the process
of diffing and syncing the virtual and
real DOM to render changes for the
user.

7 Image source

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://almerosteyn.com/2017/11/id24-accessible-react-tips-tools-tricks%23/22

8

8 Source

https://i0.wp.com/programmingwithmosh.com/wp-content/uploads/2018/11/lnrn_0201.png?ssl=1

What are the benefits?

— Incredibly fast, as only what is updated in the Virtual DOM is
updated in the real DOM

— Abstracts away interactions with DOM: declarative programming

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Detour: Declarative vs. imperative programming

Definition: Imperative programming expresses how the computation
must flow.
 - Programming how to get the outcome we want.

Definition: Declarative programming expresses the logic of a
computation without describing its flow.
 - Programming what we want the outcome to be.

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Imperative example:9

var ages = [32, 45, 16, 67];
function checkEligibility() {
 for (i = 0; i < ages.length; i++) {
 if (ages[i] < 18 || ages[i] > 65) {
 console.log('Every one is not eligible');
 return false; } }
 console.log('Every one is eligible');
 return true; }

Declarative example:

var ages = [32, 45, 16, 67];
function checkEligibility() {
 console.log(ages.every(age => age >= 18 && age <= 65)
 ? 'Every one is eligible' : 'Every one is not eligible'); }

9 See working example in CodePen

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://codepen.io/yuhangz/pen/qBjLBLB

Detour: What are advantages of imperative/declarative programming?

Imperative

— Easier to debug

— Open to customization

Declarative

— More abstraction/ Modular

— More concise and readable

— Quicker to code

— Dense code

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Let's get back to React

— React assumes declarative programming

— We only care about the outcome we want to see

— The ReactDOM library takes care of reconciliation and updating
user-facing content under the hood

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Let's look at this again visually
Credit: Maggie Appleton10

10 Image sources: next two slides

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://maggieappleton.com/
https://maggieappleton.com/react-vdom

Ok, that's why we should use
React!
The name comes from reacting to events.

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Building Blocks

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Core Components

React elements and components are the two fundamental building
blocks React uses to represent and change all user-facing context
and events.

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

React Elements

Definition: A React element is a light, stateless, immutable, virtual
representation of a DOM Element.

React elements are JS objects, thus browser-independent, until they
are rendered. Once they are rendered, they become DOM
elements.11

var root = React.createElement('div');
ReactDOM.render(root, document.getElementById('example'));

11 List of ReactElements

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://reactjs.org/docs/dom-elements.html

React Elements, Continued

If React elements are immutable, how do we update the page?

Think of an element as a single frame of a movie, which represents
the page at a certain point in time. To update the page, we create and
render a new element.

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

React.Component

Definition: A React component is a function or class that accepts an
input and returns a React element.

class Welcome extends React.Component {
 render() {
 return <h1>Hello, {this.props.name}</h1>;
 }
}

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

React.Component, Continued

Components work like JS functions; they accept props and return
React elements that correspond to what will be rendered in the
DOM.

Each component is encapsulated (one component per file) and can
operate independently, affording modularity.

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

render()

Definition: render() returns a React element to be displayed on the
page. Think of what you would like to see on the screen to
determine what should go in render().

There are two render() methods in React: ReactDOM.render() and
Component.render().

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

ReactDOM.render()12

ReactDOM.render(element, container) mounts the declared element as a
child to the specified container in the DOM.

const element = <h1>Welcome to React</h1>;
ReactDOM.render(element, document.getElementById('root'));

12 See in CodePen

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://codepen.io/yuhangz/pen/gORQGmN?editors=1011

Component.render()13

Component.render() creates the virtual DOM representation of the
contents of the React component. And then, we call ReactDOM.render()
to mount the elements on the DOM.

class App extends React.Component {
 render() {
 return (
 <div>
 <h1 className="App-title">Welcome to React</h1>
 </div>
);
 }
}
ReactDOM.render(<App />, document.getElementById("root"));

13 See in CodePen

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://codepen.io/yuhangz/pen/vYZQwzM?editors=1011

props and states

Definition: props, or properties, are the arbitrary input provided into
React components that utilize them to render content.

Components should never modify props; they are read-only and
immutable.

Definition: state is similar to props, but they are fully private and
controlled by the component.

state is what helps us keep track of changes in data.

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Usage: props14

Props are passed into functions as arguments, e.g.:

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}
const element = <Welcome name="Professor Zhao" />;
ReactDOM.render(element, document.getElementById('root'));

Reference using this.props within the component.

14 See in CodePen

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://codepen.io/yuhangz/pen/oNwQrvV?editors=0010

Usage: state15

States are defined and manipulated within components, e.g.:

class Welcome extends React.Component {
 constructor(props) {
 super(props);
 this.state = {date: new Date()};
 }
}

The state can be referenced using this.state and changed using
this.setState(). More on this later...

15 See in CodePen

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://reactjs.org/docs/state-and-lifecycle.html
https://codepen.io/yuhangz/pen/RwgqzPw?editors=1010

JSX

Definition: A syntax extension to Javascript, that adds XML syntax to
JavaScript. JSX declarations produce React elements.

<div className="red">Text</div>;

... is compiled into ...

React.createElement("div", { className: "red" }, "Text");

Babel16 is the preprocessor that compiles JSX into JS.

16 See example in Babel REPL

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://babeljs.io/en/repl%23?babili=false&browsers=&build=&builtIns=false&spec=false&loose=false&code_lz=DwEwlgbgfAUAkMAFgRigWQJ4AJEHsC2AplgA4CGA5ocAPQqwIlRYDqhANgMYHEAuuWfNjxFyVAIS0m8YACMArr34A7KABFcAd2XtcZEFgBOhAM7yitBUtyqYtcNCA&debug=false&forceAllTransforms=false&shippedProposals=false&circleciRepo=&evaluate=true&fileSize=false&timeTravel=false&sourceType=module&lineWrap=true&presets=es2017,react,stage-2&prettier=true&targets=&version=7.6.0&externalPlugins=

JSX, Continued

— JSX is not required, but makes React programming extremely
effective

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Detour: Naming Conventions17

Definition: camelCase involves writing
phrases such that each word begins
capitalized with no spaces/punctuation.

Definition: hyphen-case (aka kebab-case)
involves writing phrases in lower case
and using a hyphen as a separator.

17 Wikipedia

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://en.wikipedia.org/wiki/Camel_case

Detour: Naming Conventions, Continued

Definition: PascalCase capitalizes all words with no spaces/
punctuation.

— ReactDOM and JSX use camelCase

— React components use PascalCase

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Setting up a React project

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Setting up a React project
In the development environment

What you will need: terminal, coding environment, Node.js

npm install -g create-react-app

npx create-react-app <your-app-name>
cd <your-app-name>
npm start

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

Setting up a React project
In a sandbox

Simple React application:18

1. set sandbox settings to Babel preprocessor

2. import react and react-dom CDNs

React project:

— Create a project using a template / upload your project

18 See example in CodePen

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://codepen.io/yuhangz/pen/vYZQqKY?editors=1010

What did we learn today?

— History and overview of React

— Overview of building blocks

— Setting up a React project

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

4 Quizzes

Complete the Canvas quiz.

© Building User Interfaces | Professor Zhao | Lecture 06: React 1 — An Introduction

https://canvas.wisc.edu/courses/295709/quizzes/349127

